
Going Green for Less Green: Optimizing the Cost of
Reducing Cloud Carbon Emissions

Walid A. Hanafy
University of Massachusetts Amherst

USA

Qianlin Liang
University of Massachusetts Amherst

USA

Noman Bashir
Massachusetts Institute of Technology

USA

Abel Souza
University of Massachusetts Amherst

USA

David Irwin
University of Massachusetts Amherst

USA

Prashant Shenoy
University of Massachusetts Amherst

USA

Abstract
The continued exponential growth of cloud datacenter capac-
ity has increased awareness of the carbon emissions when
executing large compute-intensive workloads. To reduce car-
bon emissions, cloud users often temporally shift their batch
workloads to periods with low carbon intensity. While such
time shifting can increase job completion times due to their
delayed execution, the cost savings from cloud purchase op-
tions, such as reserved instances, also decrease when users
operate in a carbon-aware manner. This happens because
carbon-aware adjustments change the demand pattern by
periodically leaving resources idle, which creates a trade-off
between carbon emissions and cost. In this paper, we present
GAIA, a carbon-aware scheduler that enables users to address
the three-way trade-off between carbon, performance, and
cost in cloud-based batch schedulers. Our results quantify
the carbon-performance-cost trade-off in cloud platforms
and show that compared to existing carbon-aware schedul-
ing policies, our proposed policies can double the amount
of carbon savings per percentage increase in cost, while
decreasing the performance overhead by 26%.

CCS Concepts: • Computer systems organization →
Cloud computing; • Social and professional topics →
Sustainability.

Keywords: Sustainable Computing, Cloud Computing

ACM Reference Format:
Walid A. Hanafy, Qianlin Liang, Noman Bashir, Abel Souza, David
Irwin, and Prashant Shenoy. 2024. Going Green for Less Green:
Optimizing the Cost of Reducing Cloud Carbon Emissions. In 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 3 (ASPLOS ’24),

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04.
https://doi.org/10.1145/3620666.3651374

April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3620666.3651374

1 Introduction
The increasing demand for computing and accelerating
growth in cloud datacenter capacity have long raised con-
cerns about their sustainability, environmental impact, and
resulting carbon footprint [23]. Although cloud operators
previously addressed such concerns by increasing datacen-
ters’ energy efficiency, or work done per unit of energy
consumed, via software and hardware optimizations, recent
work highlights that continuing improvements to energy effi-
ciency are likely to see diminishing returns [12]. For example,
large datacenters already operate near the optimal PUE value
of 1.0, so there is little room to further improve PUE. Thus,
to continue reducing their carbon emissions, cloud providers
are increasingly employing supply-side optimizations, such
as purchasing renewable energy from solar and wind farms
to offset datacenter demand [22, 41]. However, eliminating
all carbon emissions using supply-side techniques alone can
be very expensive [6, 15].

Researchers have also proposed demand-side techniques
to decrease computing’s operational carbon emissions.These
techniques utilize 1) visibility into grid energy’s carbon in-
tensity (in g·CO2eq/kWh) and 2) application-level flexibility
to modulate demand based on variations in energy’s carbon
intensity [6, 21, 31, 36, 44]. For example, prior work on Wait
Awhile [44] and Ecovisor [35] utilize batch workloads’ tem-
poral flexibility to optimize carbon by executing jobs when
energy’s carbon intensity is low and pausing execution when
carbon intensity is high. Importantly, while state-of-the-art
techniques consider carbon-performance trade-offs, they ig-
nore the cost implications of carbon-aware optimizations.
Specifically, carbon-aware scheduling exploits batch jobs’
temporal flexibility to delay their execution until energy’s
carbon intensity is low. However, this delay also increases the
completion times of batch jobs. Thus, carbon-aware schedul-
ing exhibits carbon-performance trade-off: decreasing car-
bon emissions generally results in longer completion times.

In addition to the performance trade-off above, there is
also a cost trade-off when using temporal shifting to op-
timize carbon emissions. This cost trade-off manifests in

https://orcid.org/0000-0001-5765-8194
https://orcid.org/0000-0003-4702-5689
https://orcid.org/0000-0001-9304-910X
https://orcid.org/0000-0001-6952-1195
https://orcid.org/0000-0003-1722-4927
https://orcid.org/0000-0002-5435-1901
https://doi.org/10.1145/3620666.3651374
https://doi.org/10.1145/3620666.3651374

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Hanafy et al.

clusters from leaving resources idle when carbon intensity is
high. Cloud users encounter this trade-off when purchasing
cheaper, long-term reserved instances to reduce their cloud
costs [14, 27]. Idling reserved instances during periods of
high carbon intensity wastes their computational cycles and
increases the effective per-hour price per unit of computation
due to the reduced utilization.

While prior work has explored the trade-off between cost
and performance from using reserved versus on-demand
instances in the cloud [8, 9], carbon-aware scheduling adds
a new dimension to the problem. Specifically, a cost-aware
scheduler may choose to delay jobs when the cluster is satu-
rated rather than acquire additional instances, which spreads
demand across time and decreases cost. In contrast, a carbon-
aware scheduler typically concentrates jobs to low-carbon
periods, which can reduce the utilization of fixed reserve ca-
pacity during high-carbon periods. The resulting decrease in
utilization increases the effective price of reserved instances,
potentially reducing the cost savings relative to using on-
demand instances. Thus, reducing cloud carbon emissions
using a mix of reserved and on-demand instances requires
addressing a complex three-way carbon-performance-cost
trade-off.

To address the problem, in this paper, we quantify the
trade-off between carbon, cost, and performance for a cloud-
based batch scheduler. In doing so, we develop GAIA, which
enables carbon-aware scheduling of batch jobs on a mix of
on-demand, reserved, and spot instances. Our hypothesis
is that carbon-aware scheduling policies that also consider
performance and cost can reduce carbon emissions for lower
cost with higher performance than existing policies. In eval-
uating our hypothesis, we make the following contributions.

1. Trade-off Analysis. We present a quantitative and quali-
tative analysis of the three-way trade-off between carbon,
cost, and performance for cloud-based batch schedulers,
and highlight “good” points in the trade-off where sig-
nificantly improving one metric has little impact on the
others.

2. GAIA Design. We present the design of GAIA, a cloud-
based batch scheduler that employs configurable carbon-
aware scheduling policies and supports a range of cloud
purchase options, e.g., reserved, on-demand, and spot in-
stances.

3. Implementation and Evaluation.We implement a GAIA
prototype on AWS ParallelCluster [1], and conduct a large-
scale evaluation of its scheduling policies using publicly
available production workload traces and carbon intensity
profiles from different geographical regions. Our results
quantify the carbon-performance-cost trade-off and show
that compared to prior carbon-aware policies, GAIA can
double the amount of carbon savings per percentage in-
crease in cost, while decreasing the performance overhead
by 26%.

00 AM 12 PM 00 AM 12 PM 00 AM 12 PM 00 AM
0

200

400

600

C
ar

bo
n

In
te

ns
ity

 (g

C
O

2e
q/

kW
h)

1.71x

3.37x

2.16x

9x

California Canada Ontario Netherlands

Figure 1. Grid carbon intensity for three different regions
showing 9× spatial and 3.37× temporal variations.

2 Background
Below, we provide background on grid carbon intensity,
carbon-aware scheduling, and cloud-based schedulers.

2.1 Grid Carbon Intensity
The electric grid uses a mix of generation sources to satisfy
the energy demand of its customers. Common generation
sources include both carbon-intensive generators that burn
coal, oil, or natural gas and low-carbon sources, such as
hydro, nuclear, wind, and solar. Since the electricity demand
varies over time and the availability of renewable energy is
intermittent, the mix of generation sources and the relative
proportion of electrical energy they generate also varies. Grid
energy’s carbon intensity (CI) – in grams of CO2 equivalent
per watt (g·CO2eq/kWh) – reflects the average weighted
carbon intensity of the mix of sources used to generate that
energy at any given moment. Figure 1 shows the carbon
intensity variations of grid energy for three days in three
parts of the world. These variations motivate using temporal
shifting, as a job can have up to 1.7×-3.37× higher carbon
footprint depending on whether it executes during a high
or low carbon-intensity period. Moreover, the figure shows
that grid energy’s carbon intensity varies by up to 9× across
regions. While geographically distributed clusters can take
advantage of such differences, our current focus is exploiting
temporal carbon intensity variations within a single region.
Spatial batch scheduling across geo-distributed clusters is
left for future research.

2.2 Cluster-wide temporal shifting
As noted earlier, temporal flexibility in batch workloads en-
ables workload demand to matched to low carbon periods.
Recent efforts have exploited suspend-resume to match the
workload with low carbon periods of batch jobs [20, 35, 44].
In such methods, a job specifies a deadline, and the system
executes the job in a carbon-efficient manner by running it
in time slots where the carbon intensity is low and suspend-
ing execution in high carbon periods. Wait Awhile[44] and
Ecovisor[35] are recent examples of suspend-resume-based
approaches for optimizing carbon usage of individual jobs.

Going Green for Less Green: Optimizing the Cost of Reducing Cloud Carbon Emissions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Several temporal shifting methods, such as Wait
Awhile [44] and CarbonScaler [21], assume each job specifies
a deadline and that individual job lengths are known. While
schedulers have access to historical job lengths, knowledge
of individual job lengths may not always be available [9, 24].
As a result, batch schedulers such as Slurm [47] are config-
ured such that users submit their jobs to a particular job
queue, such as a short- or long-job queue, which provides an
upper bound on job length even when the actual job length
is not known. Further, users may also not specify a deadline
when submitting jobs, and even if they do, a deadline is only
meaningful to a systemwhen the job length is known. Finally,
state-of-the-art carbon-aware temporal shifting methods fo-
cus on reducing carbon for individual jobs and thus ignore
other typical cluster-wide objectives. Focusing solely on car-
bon emissions conflicts with other system-wide objectives,
such as cost and energy consumption, and performance ob-
jectives, such as completion time, which we will detail in
Section 3. Thus, a carbon-aware scheduler must consider
these costs and their trade-offs when optimizing the entire
cluster’s carbon footprint.

2.3 Cloud-based Batch Schedulers
Traditional batch schedulers, such as Slurm [47], Gri-
dEngine [19], and Torque [37], focus on fixed-sized clus-
ters and try to optimize for system-wide objectives, such as
utilization, cost, or energy consumption. Such schedulers
require queued jobs to wait when all servers in the cluster
are busy. At the same time, cluster operators carefully pro-
vision cluster sizes in a way that tries to maximize cluster
utilization to ensure cost-efficient operation and minimize
waiting time to ensure users’ productivity and convenience.

To overcome the limitations of traditional batch systems,
cloud-based batch systems, such as AWS ParallelCluster [1]
and Kubernetes [13], have been proposed to utilize the elas-
ticity of cloud resources. These schedulers are designed to
handle dynamic workloads by varying resource needs over
time — by dynamically acquiring and releasing cloud servers
to reduce job waiting times while utilizing cloud elasticity
to improve cluster utilization and only pay for the necessary
resources. To retain the benefits of both fixed-size and elastic
clusters, batch systems may also employ a hybrid setting
by using a private cloud or long-term reserved instances. In
this setting, reserved instances present a cheap and fixed
resource allocation base that covers average daily demand.
However, they require a larger time commitment with 1- or
3-year contracts, and the allocation cost must be paid for the
whole contract period, even if the instances are turned off
when not in use. This hybrid setting provides a cost-effective
alternative to using on-demand instances while retaining
the ability to scale when demand exceeds the reserved capac-
ity [14, 27]. Another approach to decrease cost is to utilize

spot instances, which are often priced much lower than on-
demand instances but may be revoked at any time based on
the infrastructure supply and demand [7, 38].

3 The Carbon-Performance-Cost Tension
We illustrate the tension between carbon-aware execution
and typical operational objectives using a simple example.
Our example consists of a synthetic three-day workload trace
with an exponentially distributed mean inter-arrival rate of
48 minutes, an exponentially distributed mean job length
of 4 hours, and 1 CPU core per job. This yields an average
cluster-wide demand of 5 CPUs. We simulate the execution
of this workload using a mix of reserved and on-demand
instances. We assume that the scheduler has five reserved
instances, each with one core. We selected reserved instances
equal to the mean demand to achieve low operational cost, as
explained in [8]. In this case, the scheduler meets the current
demand utilizing the available reserved instances and scales
the cluster using on-demand instances when no idle reserved
instances are available.

Using our example workload, we calculate the carbon
footprint, cost, and completion time of a carbon-agnostic
FCFS scheduler and compare it to the carbon-aware schedule
computed using Wait Awhile [44] that executes jobs in a
suspend-resume manner. We configure Wait Awhile with
a 24-hour maximum waiting time and compute the carbon
footprint of each job based on the carbon intensity of the time
slots when it executes. We assume that reserved instances
are turned off when idle, i.e., they do not consume energy
or carbon during idle periods. To determine the cost, we
assume a normalized pricing scheme [8] where reserved
instances cost 40% of the on-demand price. It is important to
note that reserved instances are paid upfront for the whole
period, whether utilized or not, while on-demand instances
are billed in a pay-as-you-go fashion. Finally, completion
time is computed as the sum of the waiting time and the job
execution time.

Figure 2a shows the original and the carbon-aware alloca-
tion when scheduling the workload based on the February
2022 carbon intensity of the California, US AWS cloud region.
As shown, the original demand is stable and able to utilize
the reserved instances effectively. In contrast, the carbon-
aware demand shows high spikes in low-carbon time slots,
where most of the demand is met by on-demand instances,
which increases the effective price of reserved instances and
reduces their cost savings. The implications of these sched-
uling decisions are shown in Figure 2b, which compares the
performance of Wait Awhile to the original carbon-agnostic
schedule. The carbon-aware schedule can achieve a 36% re-
duction in carbon emissions. However, changes in demand
patterns and effective price increase the cost by 68% and
completion time by 5.3×. Although some users may be will-
ing to tolerate longer completion times in return for carbon

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Hanafy et al.

0 600 1200 1800 2400 3000 3600 4200
Time (min)

0
5

10
15
20
25
30
35

D
em

an
d

(#
C

PU
s)

0

100

200

300

400

C
ar

bo
n

In
te

ns
ity

 (g

C
O

2e
q/

kW
h)

Original Wait Awhile Carbon

(a) Resource Demand

Original Wait Awhile
0

2

4

6

N
or

m
al

iz
ed

 M
et

ric Carbon Emissions
Cost
Completion Time

(b) Objectives Tension

Figure 2. The tension between carbon-aware scheduling and typical cost metrics for a three-day workload in US California.

reductions, the resulting cost increases may be unacceptable
for many customers.

While the increase in operational costs and completion
times are key trade-offs, as explained earlier, carbon-aware
schedulers that do not consider other metrics can be aggres-
sive in their scheduling decisions, irrespective of the actual
gains. Figure 2a shows an example of time slots (marked by
red circles) with almost identical carbon intensity. As shown,
the carbon-aware scheduler focuses on time slots with the
lowest carbon intensity, regardless of the actual gains and the
performance and cost overheads of such a decision. Although
not shown in this figure, we also repeated this experiment
in Sweden’s AWS region, where carbon intensity is low and
stable. In this case, the carbon-aware scheduler resulted in a
76% increase in cost and 4.9 times longer completion time
while only providing a 4% reduction in carbon emissions.

4 GAIA Design and Policies
In this section, we outline the design of GAIA, our cloud
scheduler for batch processing, and highlight our carbon-,
performance-, and cost-aware scheduling policies.

4.1 System Architecture
We design GAIA as a set of modules and services that can be
integrated into any existing cloud-enabled batch scheduler.
Figure 3 presents the architecture of GAIA, where compo-
nents we augment for carbon awareness are highlighted in
blue. Below, we describe the key elements of our carbon-
aware batch scheduler in the cloud.
Job submission. Users submit jobs using an interface that
allows them to specify the various aspects of the job, such
as the desired queue, resource requirements, and time limits.
GAIA maintains the same interface provided by the underly-
ing batch scheduler and does not require any modifications
to users’ job submission workflow or how monitoring or
accounting are done.
Queues. GAIA follows typical scheduling configurations,
where queues represent different resource types, job lengths,
and user classes. For simplicity, we focus on job length
queues, where the queue determines the maximum length
the job can run for.

Carbon Information Service (CIS). To enable carbon-
aware scheduling, GAIA uses third-party CIS services such as
ElectricityMaps [25, 26, 42] that provide real-time per-region
carbon intensity information and forecasts.
Resource Manager. The resource manager is responsible
for resource allocation and monitoring. It operates on stan-
dard cloud offerings such as on-demand, reserved, and spot
instances. The resource manager follows the schedule and
uses reserved instances when available. If the demand ex-
ceeds the available reserved resources (or in on-demand-
only clusters), the resource manager allocates and releases
on-demand instances based on the number of jobs in the
queue. The resource manager can also alternate between
spot and on-demand instances based on their availability
and expected eviction rates.
Accounting. Today’s batch schedulers offer comprehensive
accounting capabilities that allow monitoring of a job’s re-
source consumption, execution time, waiting time, and exit
codes. For example, Slurm uses a DB Daemon (SlurmDBD)
and MySQL to maintain current and historical resource con-
sumption traces. However, in addition to standard metrics,
GAIA requires accounting for carbon footprint, cost, and elas-
ticity overheads, which vary based on execution time and the
cloud purchase options used for the job. To account for a job’s
carbon footprint, GAIA combines the job’s energy consump-
tion with the carbon intensity of energy from the CIS. GAIA
also considers the dynamics of various cloud offerings, such
as on-demand, reserved, and spot instances, to account for
the cost, carbon, and overhead of spawning cloud instances.
Finally, we highlight that the cost and energy consumption
of on-demand and spot instances are accounted for based on
usage. However, reserved instances’ costs are fully paid in
advance for the whole allocation time, aside from the actual
usage. Nonetheless, reserved instances’ energy and carbon
consumption can be accounted for based on actual usage.
GAIA Scheduler. At the core of our system lies the GAIA
scheduler. It is responsible for scheduling jobs submitted
by users based on policies determining when (waiting time)
and where (cloud offering) the job should run. The scheduler
supports a wide range of policies considering the carbon

Going Green for Less Green: Optimizing the Cost of Reducing Cloud Carbon Emissions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

GAIA
Scheduler

Carbon Infromation Service

Master Nodes
Submit Job

Spot
InstancesSpot

InstancesSpot
Instances

On-demand
InstancesOn-demand
InstancesOn-demand

Instances

Reserved
InstancesReserved

Instances
Reserved
Instances

Resource Manager

Job
- Resources
- Queue

Waiting
Queues

Accounting
DB

Resource Consumption

Figure 3. GAIA architecture and its components.

footprint, waiting time, and cost, as discussed below. Cur-
rently, GAIA is restricted to uninterruptible scheduling of
batch workloads, where the scheduler is responsible for pick-
ing a start time, and the job is executed until completion.
Adding suspend-resume capability to the scheduler is part
of future work. Such a capability can further increase car-
bon savings by suspending jobs during high carbon intensity
periods, albeit at the expense of increasing completion times.

4.2 GAIA Scheduling Policies
Our policies assume that users submit their jobs to a job
queue. For ease of exposition, we describe the policies as-
suming two queues — a short and a long queue. However, our
policies can be extended to an arbitrary number of queues.
These queues provide an upper bound on the job length,
where the cluster administrators specify a maximum time
�<0G
Bℎ>AC

and �<0G
;>=6

respectively, for which a job in each queue
can run before it is terminated. We also assume that the clus-
ter administrator specifies a maximum waiting time,,Bℎ>AC

and,;>=6, that a job in each queue is willing to wait — the
scheduler guarantees the job will begin executing no later
than, . Note that,Bℎ>AC and,;>=6 are system-wide param-
eters, and jobs do not need to specify any slack or deadlines.
In the rest of this section, we describe carbon-aware and
carbon- and waiting-aware policies while assuming a con-
stant pricing scheme, i.e., only on-demand instances. Then,
we extend these policies to include cost awareness using
cheaper reserved and/or spot instances.

4.2.1 Carbon-aware Batch Scheduling. To compute a
carbon-aware start time CBC0AC for a job arriving at time C , the
scheduler computes a start time within the window [C, C +,)
that optimizes the carbon footprint of the job and runs the
job until it finishes. The carbon-aware CBC0AC can be computed
in two ways. One way is to examine the carbon intensity
forecasts in thewindow [C, C+,) and choose the slot with the
lowest carbon intensity to begin executing the job, denoted as
the Lowest Carbon Slot (Lowest-Slot) policy. An alternative
is to schedule the jobs around such low carbon periods, and
choose the time segment of length � with the lowest carbon
intensity. We refer to this approach as the Lowest Carbon
Window (Lowest-Window) policy. In this case, the scheduler

chooses CBC0AC ∈ [C, C +,) such that the total carbon footprint
of the job in the interval [CBC0AC , CBC0AC + �] is minimized. The
total carbon footprint C(CBC0AC), at CBC0AC is given by:

C(CBC0AC) =
CBC0AC+�∑
C=CBC0AC

2 (C) · 4.

where 2 (C) is carbon intensity at time slot C and 4 is the
energy cost of the cloud server for a time unit. However, as
mentioned in prior research [9, 18, 24], a batch scheduler may
not know the job length � prior to execution and may only
know a coarse upper bound based on the queue. In this case,
the Lowest-Window policy uses the historical queue-wide
average, �0E6

Bℎ>AC
and �

0E6

;>=6
for selecting the start time.

4.2.2 Waiting- and Carbon-aware Batch Scheduling.
The above carbon-aware policies are oblivious to increases
in completion time compared to the actual carbon savings.
To consider the performance overhead of carbon savings, a
scheduler can choose CBC0AC ∈ [C, C +,) such that the Carbon
Saving per Completion Time, denoted as �() , is maximized.
We call this policy Carbon-Time. Under this policy, when a
job starts at CBC0AC , its �() (CBC0AC) is given by:

�() (CBC0AC) =
C(C) − C(CBC0AC)
CBC0AC + � − C

.

where C(C) is the carbon footprint of immediately starting
the job, i.e., carbon agnostic footprint, and C(CBC0AC) is the
carbon footprint at CBC0AC . Similar to the earlier policies, GAIA
utilizes the mean job length �

0E6

Bℎ>AC
and �

0E6

;>=6
as a coarse ap-

proximation of the job length.

4.2.3 Cost- and Carbon-aware Batch Scheduling. Our
policies optimize carbon and consider the performance when
running jobs exclusively on on-demand servers at CBC0AC .
However, as explained in Section 2.3, a typical cloud-based
cluster utilizes a hybrid setting by using a “fixed” set of re-
served instances to fulfill a portion of their demand at a
cheaper cost. In this hybrid setting, when a job is dequeued,
the resource manager schedules the job on a reserved in-
stance if one is available, benefiting from the lower prices.
Otherwise, it launches an additional on-demand instance to
execute the job. Unfortunately, as highlighted in Section 3,
this approach reduces the cluster utilization, decreasing the
utility of the pre-paid reserved instances.

To maximize the utilization of reserved instances, and
thus lower on-demand costs, a scheduler should operate in
a work-conserving manner [9]. In this case, upon the arrival
of a new job, if an idle reserved server is available, it is sched-
uled immediately for execution with no wait. Otherwise, the
scheduler computes the carbon-aware CBC0AC that minimizes
the job’s carbon footprint. If a reserved server becomes idle
before the earliest CBC0AC , the job with this CBC0AC is started
on this reserved server. Otherwise, the scheduler acquires
an on-demand server at CBC0AC and executes the job on that

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Hanafy et al.

Reserved Capacity

O
pe

ra
tio

n
M

et
ric

s Carbon
Cost

Carbon
Optimal Cost Optimal

Carbon-Cost Trade-off

1 2 3

(a) The effect of reserved capacity on carbon and cost.

Execution Time

D
em

an
d

No Trade-off
Reserved Capacity

Execution Time

D
em

an
d

Less FlexibilityReserved Capacity

3

1

Carbon-Aware Demand Final Demand

2

High Flexibility

(b) Illustrating scheduling flexibility across operating regimes.

Figure 4. The carbon-cost trade-off.

server. We refer to this policy as the Reserved First (RES-
First) policy. The intuition behind this policy is that since
these instances have been paid for, it is better to use a work-
conserving approach that always schedules a newly arriving
or a queued job whenever a reserved server becomes idle.
This ensures cost-efficient execution using reserved servers.

Since cost-efficiency is crucial in this hybrid setting, a
key issue is that the amount of reserved capacity, which dic-
tates temporal flexibility and carbon emissions. For example,
when using only on-demand, the RES-First boils down to a
carbon-aware policy, resulting in the lowest carbon footprint.
However, increasing the reserved capacity and ensuring its
high utilization limits the temporal flexibility, and jobs may
be executed as they arrive or at a suboptimal CBC0AC . We il-
lustrate this relationship in Figure 4. Figure 4a illustrates
possible operating regimes. In regime 1 , the carbon foot-
print is minimal, and acquiring reserved instances to cover
the lower demand bound, see Figure 4b (top), will allow the
scheduler to maintain its carbon savings while achieving cost
savings. Regime 2 shows the trade-off between carbon and
cost, where the operator must choose the most critical objec-
tive. This scenario is illustrated in Figure 4b (bottom), where
surpassing the demand bound increases the cost savings but
limits the scheduler’s flexibility to follow the carbon-aware
schedule. Finally, in the regime 3 , the reserved capacity is
in excess, cannot satisfy the cost-breakeven utilization, and
offers no temporal flexibility — a regime operators should
always avoid. We note that increasing the reserved instances
for a work-conserving policy always reduces waiting time.

4.2.4 Spot-aware Batch Scheduling. On-demand in-
stances tend to be the best option for minimizing carbon
emissions. However, this comes at an increased operational
cost for cloud users due to the higher cost of on-demand
instances. While reserved instances helps with this issue,
they significantly limit carbon savings. One alternative is to
use spot instances, which are excess cloud resources rented
at a discounted rate, e.g., 20% of the on-demand price until
needed by a higher-paying customer so the current cus-
tomer is evicted. The likelihood of being evicted (eviction
rate), defined as the percent of evicted customers in a time

slot, e.g., an hour, changes as the daily and weekly demand
changes [46]. While there is a chance of eviction and loss of
a job’s progress, the high discount rate makes spot instances
attractive.

To benefit from spot instances’ discounted rate, GAIA uses
spot instances to satisfy a portion of the demand. In this case,
we compute a carbon-aware CBC0AC and execute the job on
a spot instance rather than an on-demand one. Since spot
instances can be evicted, we currently assume that all of the
job’s progress is lost. This assumption is common in HPC
settings [29] where application-agnostic system-level check-
point/restart is challenging to implement [32]. However, in
scenarios where checkpoint/restart functionality is available,
then an additional tradeoff exists between the checkpointing
overhead, eviction rate, and the amount of recomputation
required on each eviction, as discussed in prior work [33, 34].
Exploring this additional tradeoff in the context of carbon,
cost, and performance is future work.

The risk of being evicted and progress loss increases with
execution time; thus, we use spot instances only for short
job queues and restart the job on an on-demand instance if it
is evicted. We refer to this policy as Spot First (Spot-First).
The carbon and cost benefits of spot instances depend on
the eviction and discount rates, where a higher eviction rate
means more lost progress, which increases cost and carbon
overheads. Although the added cost is fixed, it is a function
of the difference between spot cost, on-demand cost, and
amount of lost progress. The added carbon depends on the
carbon intensity of the new execution window.

As a cloud user, combining different purchasing options
for maximum benefits is common. GAIA’s batch scheduler fol-
lows this same approach by integrating various resources and
types to get the most out of each purchasing option. Specif-
ically, we integrate the Reserved First (RES-First) policy
and Spot First (Spot-First) and use them for long and short
jobs, respectively. The short jobs follow the Spot-First pol-
icy by running on spot instances, and in case they fail, they
can run on either on-demand or reserved instances based on
availability. On the other hand, long jobs strictly follow the
RES-First policy and use on-demand only if the start time

Going Green for Less Green: Optimizing the Cost of Reducing Cloud Carbon Emissions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

CBC0AC arrived and no reserved instance was available, a policy
we denote as Short Spot Reservation (Spot-RES). We note
that the combined policy is subject to the same trade-offs as
the RES-First policy, where potential gains and drawbacks
are experimentally detailed in Section 6.

5 Implementation
GAIA is designed as an extensible interface that can inte-
grate with standard batch schedulers such as SLURM, Spark,
etc. GAIA’s current implementation relies on the AWS Slurm
Cluster service, AWS ParallelCluster [1], an open-source
management tool that enables creating and managing High-
Performance Computing (HPC) clusters in AWS. It provides
users with automatic resource scaling that can dynamically
grow and shrink the cluster according to fluctuations in de-
mand. The cluster utilizes AWS elasticity to scale the cluster
based on resource demand and can be configured to use
multiple instance purchasing options and sizes. We deploy
GAIA along with the Slurm master node, which intercepts
all incoming job submissions and queues them based on the
underlying policy. The implementation uses PySlurm [3] to
submit and monitor jobs, as well as monitor cluster status.
We consider the entire instance time, including initiation and
termination times, for carbon and cost accounting. Other
accounting details are explained in Section 4.1.

To enable large-scale and year-long evaluation, we also
implement a cloud simulator, called GAIA-Simulator, that
incorporates GAIA’s components by emulating their cost
model, e.g., on-demand versus reserved pricing, and behav-
ior, e.g., instance revocations in spot instances. The simulator
follows the same interface and accounting methodology. Al-
though the current version does not account for initialization
and termination overheads, the results in Section 6 focus on
normalized metrics, enabling us to neglect such overheads.
The GAIA implementation for AWS and cloud emulators was
done in Python using ∼2k SLOC. The code is available at
https://github.com/umassos/GAIA.

6 Evaluation
This section evaluates our GAIA prototype and its scheduling
policies with regard to their carbon emissions, performance,
and cost. We start by exploring carbon emissions and its
effect on completion time using AWS ParallelCluster [1].
Next, we illustrate and quantify trade-offs in carbon-aware
scheduling when using GAIA in hybrid settings. Finally, we
leverage GAIA-Simulator to generalize our findings across
large-scale workload traces, regions, and settings.

6.1 Experimental Setup
Workload Traces Generation. Our experiments use three
real-world cluster traces: a two-month long Alibaba-PAI
trace [43], a month-long Azure-VM trace [11, 16], and a five-
year long Los Alamos National Lab (LANL) Mustang-HPC

5mins 1hr 12hrs 4Days
Job Length

0

0.2

0.4

0.6

0.8

1

C
D

F

10min 12min
0.2

0.21

0.22

Sampled 1k Sampled 100k Original (5min-72hrs)

5mins 1hr 12hrs 4Days
Job Length

0

0.2

0.4

0.6

0.8

1

C
D

F

10min 12min
0.2

0.21

0.22

(a)

1 10 100
Job Demand (#CPus)

0

0.2

0.4

0.6

0.8

1

C
D

F

4 5
0.84

0.85

(b)

Figure 5. Job length (a) and CPU demand (b) distributions
between original and sampled Alibaba-PAI traces.

trace [10]. Note that the traces include jobs with multiple
tasks running in parallel. For example, the Mustang-HPC
trace includes many parallel MPI jobs. We used these traces
to construct synthetic traces as follows:
1) Sampling We used each original trace’s job length in-
formation to construct year-long and week-long multi-node
job traces. First, we uniformly sampled each original trace
to construct a 100k job trace spanning a full year. Each such
trace is used to simulate a year-long cluster run. Second,
to evaluate the GAIA prototype, we uniformly sampled 1k
jobs from the first week of the Alibaba-PAI trace forming a
week-long trace. Since such trace is used to evaluate the GAIA
prototype running on a real AWS ParalellCluster testbed, we
limited the sampling to jobs that run on four CPUs or less for
budgetary reasons. Further, when constructing these traces,
we ignored very short jobs (i.e., jobs less than five minutes)
and very long jobs (i.e., jobs longer than three days). We
assume that very short jobs may not tolerate long delays of
several hours and may not contribute to carbon consump-
tion. For example, in the Alibaba-PAI trace, although jobs
that are less than five minutes are 38% of the total number of
jobs, they only contribute 0.36% of the total compute cycles.
In addition, very long jobs spanning multiple days will see
little benefit from being delayed due to the diurnal nature of
carbon intensity variations [39].
2) Length Extension. To construct our year-long workload
traces, we used the last year of the Mustang-HPC trace and
replicated the Azure-VM and Alibaba-PAI traces multiple
times and then sample from them. Although such replication
does not capture seasonal demand changes, using a year-long
trace captures the effects of seasonal variations in carbon
intensity on the workload’s carbon footprint.
3) Demand Normalization. Traces use different com-
pute units, e.g., Azure-VM trace provides resource buckets,
Alibaba-PAI trace uses GPUs, whileMustang-HPC trace uses
a 24-core machine as a unit. We use these numbers as a proxy
of CPU demand and assume that resources are homogeneous.

Figure 5 shows the distributions of job lengths and job
demand for the year-long (100k) and week-long (1k) traces

https://github.com/umassos/GAIA

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Hanafy et al.

SE ON, CA SA, AU CA, US NL KY, US
0

300

600

900

1200

C
ar

bo
n

In
te

ns
ity

(g

.C
o 2

eq
/k

W
h)

Low/Stable
Low/Variable

Med/Variable Med/Variable
Med/Variable

High/Stable

Figure 6. Carbon intensity across diverse cloud regions.

Jan. Feb. Mar. Apr. May June July Aug.Sept. Oct. Nov. Dec.
Month

0
50

100
150
200
250
300
350

C
ar

bo
n

In
te

ns
ity

(g

.C
o 2

eq
/k

W
h)

1.65x
1.91x

California, US South Australia

Figure 7. Mean carbon intensity across different months in
California, US and South Australia.

constructed from the original Alibaba-PAI trace using the
above process. The figure shows that both traces have job
length distributions that resemble the original trace.TheCPU
demand distribution of the week-long trace is somewhat
different from the original (due to the trace being limited to
jobs with 4 CPUs or less for experimental tractability), while
the year-long trace is similar to the original trace.
Carbon Intensity Traces. We use hourly carbon intensity
traces from Electricity Maps [26] for 2022 from 5 geograph-
ical regions, shown in Figure 6. We group them into three
categories based on average carbon intensity (Low, Medium,
and High) and two categories based on variability (Stable and
Variable). The selected regions are representative examples
of various combinations of carbon intensity and variability
in today’s cloud regions. Figure 7 shows the variations in
average carbon intensity in California, US and South Aus-
tralia. In addition to daily variations, see Figure 1, and yearly
variations, see Figure 6, the figure highlights year-long varia-
tions that significantly impact the total carbon consumption.
For example, the carbon intensity in South Australia almost
doubles between July and December. Finally, we assume
perfect knowledge of the future carbon intensity, as prior
work demonstrates that carbon intensity forecasts are highly
accurate [25].
GAIA Deployment. We deploy GAIA in AWS where the
head node uses a c7gn.xlarge instance, while workers use
c7gn.medium. The c7gn.medium costs $0.0624 per hour. We
utilize actual pricing discounts for 3-year reserved and spot
instances. The 3-year reserved and spot instance costs 40%
and 20% of the on-demand instance price, respectively. Fi-
nally, we note that GAIA experiments on AWS Parallel cluster

Table 1. Summary of scheduling policies

Policy Job Length Carbon-Aware Performance-Aware
NoWait [9] - - -

AllWait-Threshold [9] - - -
Wait Awhile [44] Yes Yes -
Ecovisor [35] - Yes -
Lowest-Slot - Yes -
Lowest-Window �0E6 Yes -
Carbon-Time �0E6 Yes Yes

use an expedited time frame where we accelerate experi-
ments by a factor of 5×.
Baselines. Table 1 summarizes our baseline policies and our
proposed policies from Section 4.2 and their assumptions.We
later explain howwe use these policies in a work-considering
manner or with spot instances.
1. No Jobs Wait (NoWait) [8]: This policy runs jobs as they

arrive and represents a carbon- and cost-agnostic baseline.
2. All Jobs Wait Threshold (AllWait-Threshold) [8]: A

cost-aware baseline that delays the job until a reserved
instance is available or until the maximum waiting time is
reached. Upon reaching the maximum waiting time, the
scheduler runs the job on an on-demand instance.

3. Wait Awhile [44]: A carbon-aware policy that knows
the job length � and the deadline. The policy schedules
the workload by selecting time slots summing to � with
the lowest carbon intensity within this deadline, which
we set as � +, . To emulate such an assumption, we
profile the workload and then configure the job to run
for a predetermined number of cycles corresponding to a
specific amount of time.

4. Ecovisor [35]: This policy uses a greedy threshold ap-
proach and executes the job if the current carbon inten-
sity is below the threshold; otherwise, it pauses the job.
We set the threshold to the 30th percentile of the carbon
intensity over the next 24 hours. To ensure compliance
with our waiting limits, the job is executed to completion
after waiting for the allowed time.

5. Proposed Policies: The Lowest-Slot policy does not
know the job length, the Lowest-Window, and Carbon-
Time policies know a queue-wide average. Lastly, the
Carbon-Time acknowledges the performance overheads.
For all scheduling policies, unless otherwise mentioned,

the maximum time for the short queue (�Bℎ>AC) is 2 hrs, and
all other jobs are submitted to the long queue. We assume
that users accurately assign their short and long jobs to
the appropriate job queue. Finally, we configure maximum
waiting times for the short and long jobs (,Bℎ>AC and,;>=6)
to be 6 and 24 hrs, respectively.

6.2 Carbon- and Performance-aware Scheduling
In this section, we examine scheduling policies for different
job characteristics and assumptions using GAIA-prototype
and the week-long (1k jobs) from the Alibaba-PAI trace.

Going Green for Less Green: Optimizing the Cost of Reducing Cloud Carbon Emissions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

NoWait Lowest-
Slot

Lowest-
Window

Carbon-
Time

Ecovisor Wait AWhile
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 M
et

ric

Carbon Emissions Waiting Time

Figure 8. Normalized carbon emissions and waiting times for
different policies in South Australia.

5mins 1hr 3hrs 12hrs 60hrs
Job Length

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 T
ot

al
C

ar
bo

n
R

ed
uc

tio
n

(C
D

F)

Figure 9. CDF of normalized total carbon reduction for the
Alibaba-PAI trace in South Australia across job length using
the Carbon-Time policy.

6.2.1 Scheduling Policies. We start by evaluating the
reductions in carbon emissions and performance overhead
of carbon-aware and carbon-performance-aware scheduling
policies. Figure 8 depicts the carbon emissions and waiting
times of six policies, see Table 1, normalized to the highest
value in each metric. The figure shows that the suspend-
resume policies (e.g., Wait Awhile and Ecovisor) achieve both
the lowest carbon emissions and the highest performance
penalty (i.e., highest waiting times), as such policies are often
aggressive in their scheduling decisions and may delay a
job until the latest possible moment if it yields any carbon
savings. The figure also shows the ability of policies that
only know a coarse-grained estimate of job length and do not
require suspensions to achieve comparable carbon emissions.
For instance, the Lowest-Window incurs 3% and 16% more
carbon emissions compared to Ecovisor and Wait Awhile
policies, respectively, without knowing the exact job length
or interrupting executions. Finally, the figure shows that the
Carbon-Time policy that considers both carbon savings and
performance overhead can reduce the performance overhead
by 50% compared to the WaitAwhile while adding 6% and
23%more carbon emissions compared to the Lowest-Window
and Wait Awhile policies.

6.2.2 Effect of Job Characteristics. Job length and re-
source demand greatly influence carbon emissions [39].
Short jobs can be shifted to the time slots with the lowest
carbon intensity, while long jobs will be subjected to daily
carbon intensity patterns. In contrast, medium-length jobs
have more potential for carbon savings, as they use more

NoWait AllWait-
Threshold

Wait AWhile Ecovisor Carbon-
Time

RES-First-
Carbon-Time

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 M
et

ric

Carbon Emissions Cost Waiting Time

Figure 10. Normalized carbon, cost, and waiting time across
policies using 9 reserved instances, in South Australia.

compute cycles than short jobs and can still be shifted to
low-carbon periods. Figure 9 shows shows the CDF of to-
tal carbon reduction by job length using the Carbon-Time
policy. Although jobs ≤1hr are almost 50% of the total jobs
in the traces, see Figure 5a, they only contribute 10% to the
total savings. Moreover, the figure shows that only 7.5% car-
bon savings come from long jobs(≥24 hrs), as they benefit
less from temporal shifting since the carbon intensity has
roughly a 24 hour period. Lastly, the graph shows that 50% of
the carbon savings come from jobs between 3 and 12hrs since
they consume the most CPU cycles in the cluster and have
some flexibility to be shifted to the lowest carbon windows.
Key Takeaways: Coarse grain estimates of job length and
understanding the carbon-performance trade-off enable carbon-
aware scheduling policies to reduce waiting time by 50% while
incurring 23% more carbon emissions compared to the Wait
Awhile policy that knows job length and allows interruptible
executions. Total carbon emissions savings from very short and
very long jobs are negligible.

6.3 Cost- and Carbon-aware Scheduling
In this section, we consider a realistic hybrid setting where
users are cost-conscious and financial costs are at least as
important as carbon savings. We reveal the trade-off by
employing the work-conserving (RES-First) and the spot-
aware (Spot-First) variants of the proposed policies using
our GAIA-prototype and the week-long (1k jobs) from the
Alibaba-PAI trace.

6.3.1 Reserved-Aware Scheduling. As explained in Sec-
tion 4.2.3, the amount of reserved capacity and its utilization
impacts the cost and carbon consumption of the cluster. Fig-
ure 10 shows the performance of six scheduling policies
(see Table 1) normalized to the highest value in each metric
when running on 9 reserved instances. As shown, the NoWait
policy gives the highest carbon footprint, while the AllWait-
Threshold policy provides the lowest cost for this amount
of reserved instances, but results in a high carbon consump-
tion and the highest waiting time. The figure demonstrates
the drawback of carbon-aware policies, which results in the
highest costs while yielding the same carbon savings shown
in Figure 8. The high execution costs of Wait Awhile and

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Hanafy et al.

0 3 6 9 12 15 18 21 24
Reserved Instances

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 M
et

ric

Cost
Carbon Emissions
Waiting Time

0

1

2

3

4

5

W
ai

tin
g

Ti
m

e
(h

ou
r)

Figure 11. Normalized carbon and cost w.r.t. NoWait (on-
demand) execution (left-axis) and waiting time (right-axis)
across reserved instances using the RES-First-Carbon-Time
policy in South Australia.

Ecovisor are due to the suspend-resume execution, which
highly fragments the demand, leading to lower utilization. Fi-
nally, we show how the proposed RES-First-Carbon-Time
policies balance the metrics, achieving the best performance
and saving 21% of the operational cost while retaining 50%
of the achieved carbon savings of the Carbon-Time policy.

Reserved instances and attentiveness toward their high
utilization affect the scheduling decisions and the perfor-
mance outcomes. This hybrid setting introduces a three-way
trade-off between cost, carbon, and waiting time (perfor-
mance). Figure 11 highlights this relationship using the RES-
First-Carbon-Time policy. The figure shows normalized
cost, carbon (left y-axis), and waiting time (right y-axis) with
respect to the NoWait with no reserved instances. As shown,
adding reserved instances, up to a certain point, decreases
the cost as jobs benefit more from the cheaper reserved in-
stances while limiting carbon savings as jobs increasingly
run on reserved instances. The figure shows that selecting 18
instances yields the lowest cost while yielding 6% less carbon
than the NoWait baseline. The figure also shows how users
can select their trade-off point based on their objectives. For
example, compared to selecting 18 reserved instances, users
can use 15 reserved instances, increasing the carbon savings
to 10% for an extra 4% cost, i.e., 55% cost-savings compared
to a pure on-demand cluster. Finally, the results show that
the average waiting time strictly decreases with the number
of reserved instances, as it reduces the probability of staying
in the waiting queue until the carbon-optimal start time.

6.3.2 Spot-Aware Scheduling. Spot instances offer car-
bon and cost benefits by allowing the scheduler to follow a
carbon-aware schedule while running at a discounted price.
However, the benefits of spot instances are limited by the
ability to acquire and keep the instance during the entire
execution time. To address this, we only schedule short jobs
(≤ 2 hrs) on spot instances, an assumption we revisit later.1
Figure 12 depicts the carbon, waiting time, and cost of differ-
ent policies and add the Carbon-Time policy with 0 reserved

1Spot instances were never evicted in our experiments.

Carbon-
Time
(0)

Spot-First-
Carbon-Time

(0)

Spot-First-
Ecovisor

(0)

SPOT-RES-
Carbon-Time

(9)

SPOT-RES-
Carbon-Time

(6)

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 M
et

ric

Carbon Emissions Cost Waiting

Figure 12. Normalized carbon and cost when using spot and
reserved instances. TheThe value (') below each label represent
the number reserved instances.

instances for reference. As shown, using the spot instances
with carbon-aware policies, i.e., Spot-First-Carbon-Time
and Spot-First-Ecovisor, maintains the carbon savings de-
picted in Figure 8, while providing 17% cost savings. The fig-
ure also shows that combining spot and reserved instances
(e.g., Spot-RES-Carbon-Time) introduces the same trade-off
between carbon and cost. However, the trade-off points will
depend on the demand not covered by spot instances. For
example, when using 9 reserved instances, the remaining
load will decrease the cost, saving 42% compared to Carbon-
Time with 0 reserved instances, but will force more long
jobs to run at a sub-optimal start time, reducing the carbon
savings to 15%. In contrast, when using 6 reserved instances,
the system achieves 20% carbon savings for 11% extra cost
compared to Spot-RES (9). Finally, we highlight that GAIA
does not dictate the size of reserved capacity but provides
the best carbon savings under any configuration.
Key Takeaways: Using reserved and spot instances allows
users to configure the carbon-cost trade-off point. Our results
demonstrate that we can double the carbon savings per percent-
age increase in cost while decreasing performance overheads.

6.4 Large Scale Experiments
In this section, we utilize GAIA-Simulator to evaluate our
proposed scheduling policies in a simulated large cluster
setting using the year-long (100k) real-world cluster traces
from Mustang-HPC trace, Alibaba-PAI trace, and Azure-VM
trace.

6.4.1 Trade-offs Across Workload Traces. Figure 13
presents the normalized carbon emissions and waiting time
for different workloads executed in US California. Figure 13a
shows that the Wait Awhile policy achieves lowest car-
bon emissions and the highest performance overheads. The
Mustang-HPC and Azure-VM traces show maximum carbon
savings of 26% and 19%, respectively. The reason for this
variation is attributed to the job distribution among traces.
For example, the Mustang-HPC trace maximum job length is
16 hrs, allowing it to gain high savings, while the Azure-VM
trace has long jobs that span across cycles of carbon intensity.
The figure also depicts the sensitivity to the knowledge of

Going Green for Less Green: Optimizing the Cost of Reducing Cloud Carbon Emissions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Mustang Alibaba Azure
0.00

0.25

0.50

0.75

1.00
N

or
m

al
iz

ed
 C

ar
bo

n

Lowest-Window Carbon-Time Ecovisor Wait Awhile

Mustang Alibaba Azure
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 C
ar

bo
n

(a) Normalized Carbon

Mustang Alibaba Azure
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 W
ai

tin
g

(b) Normalized Waiting Time

Figure 13. Normalized carbon (a) and waiting time (b) across
policies and cluster traces in US California.

0 12 24 36 48 60 72 84
Wlong (Hour)

0
2
4
6
8

10
12

Sa
ve

d
K

g.
C

o 2
eq

/
 W

ai
tin

g
ho

ur

Lowest-Window Carbon-Time

0 3 6 9 12 15 18 21 24
Wshort (Hour)

0
2
4
6
8

10
12
14
16

Sa
ve

d
kg

.C
o 2

eq
/

 W
ai

tin
g

ho
ur

(a),;>=6 = 24 hrs

0 12 24 36 48 60 72 84
Wlong (Hour)

0
2
4
6
8

10
12

Sa
ve

d
kg

.C
o 2

eq
/

 W
ai

tin
g

ho
ur

(b),Bℎ>AC = 6 hrs

Figure 14. Saved carbon per waiting times for different waiting
time thresholds for the Alibaba-PAI trace in South Australia.

the job and the benefits of suspend-resume execution. For
example, compared to the Wait Awhile policy that knows
the job length and can suspend the job, the Lowest-Window
policy retains 68% of the carbon savings for the Mustang-
HPC trace while only preserving 44% of the savings for the
Azure-VM trace. This variation directly results from the job
length distribution between traces where the job length aver-
age of the Mustang-HPC trace is representative of the whole
trace, while jobs in Azure-VM are more variable. Finally, we
demonstrate the benefits of the Carbon-Time policy, which
can reduce the waiting time by 20% compared to the Lowest-
Window policy while yielding comparable carbon savings.
Key Takeaways:Under the same scheduling assumptions, aug-
menting carbon-aware policies with performance-awareness
decreases waiting time by 20% with similar carbon savings.

6.4.2 Effect of Waiting Time. Waiting time represents
the performance penalty the user is willing to pay to obtain
carbon savings. Although willingness to wait longer (i.e.,
lower performance) should yield higher savings, extending
the waiting time yields diminishing gains [21, 39]. More-
over, as noted earlier, some carbon-aware schedulers delay
jobs if it results in any carbon savings, which may not be
worthwhile compared to the incurred performance overhead.
Figure 14 shows the carbon saving per each waiting hour
incurred by the user when applying the Lowest-Window and
Carbon-Time policies for different maximum waiting time

SA, AU ON, CA CA, US NL SE KY, US
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 C
ar

bo
n

Mustang Alibaba Azure

Figure 15. Normalized carbon emissions across workloads and
regions, using Carbon-Time policy.

SA, AU ON, CA CA, US NL SE KY, US
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 C
ar

bo
n

0

10

20

30

40

50

To
ta

l S
av

ed
 C

ar
bo

n
(k

gC
O

2e
q)

Normalized Carbon Saved Carbon (kg)

Figure 16. Normalized and saved carbon emissions for the
Alibaba-PAI trace across regions, using Carbon-Time policy.

thresholds. Figure 14a shows the effect of,Bℎ>AC while fixing
,;>=6 = 24 hrs, while Figure 14b shows the effect of,;>=6

while fixing,Bℎ>AC = 6 hrs. As depicted, extending the wait-
ing time for short jobs results in lower savings per waiting
hour. Short jobs constitute most of the workload trace and
can significantly impact the mean waiting time, but have a
limited effect on the overall carbon savings as stated earlier.
Conversely, extending the waiting time for long jobs leads
to higher savings, but there is a point beyond which waiting
longer shows diminishing carbon savings but high waiting
times. Lastly, although the Lowest-Window policy can reduce
carbonmore than the Carbon-Time policy, the Carbon-Time
policy consistently outperforms the Lowest-Window policy
by providing higher savings per waiting time. The results
show that the Carbon-Time policy achieves 80-90% of the
carbon savings of the Lowest-Window policy while decreas-
ing waiting time by 20-30%.
Key Takeaways: Increasing waiting time results in diminish-
ing increases in carbon savings and considering the benefits
of waiting will limit the carbon-aware schedulers’ aggression
towards limited carbon savings.

6.4.3 Effect of Geographic Regions. Carbon intensity
characteristics determine the possible carbon savings. For
example, carbon intensity variations within the scheduling
horizon dictate the potential savings a job can yield, while the
carbon intensity, in g·CO2eq, governs the total carbon sav-
ings. Figure 15 illustrates the normalized carbon emissions
and total savings, compared to the NoWait policy, for various
regions and workload traces using the Carbon-Time policy.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Hanafy et al.

Mustang
(468)

Alibaba
(100)

Azure
(142)

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 C
os

t

All-Wait-Threshold
Carbon-Time

Ecovisor
RES-First-Carbon-Time

Mustang
(468)

Alibaba
(100)

Azure
(142)

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 C
os

t

(a) Normalized Cost

Mustang
(468)

Alibaba
(100)

Azure
(142)

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

ie
d

C
ar

bo
n

(b) Normalized Carbon

Figure 17. Normalized cost and carbon emissions across work-
load traces and policies, in South Australia. The value (') refers
to the number of reserved instances for each trace.

As shown, regions with high variations result in low car-
bon emissions and vice versa. For example, South Australia,
which has the highest variation, see Figure 6, yields the low-
est emissions, achieving 27.5% less carbon emissions, while
the Kentucky trace only yields 1% less carbon emissions.
Furthermore, it is worth noting that waiting time, which we
omit for space constraints, remains the same across regions
for the same workload trace.

Effective carbon-aware scheduling policies are judged not
only by normalized carbon savings but also by their total car-
bon reductions. Figure 16 illustrates the normalized and total
carbon savings of the Alibaba-PAI trace using the Carbon-
Time policy. The graph shows the impact of regional carbon
intensity characteristics depicted in Figure 6, where regions
with higher variations results in lower normalized carbon
emissions. The results also show that, although the total sav-
ings in Ontario, Canada, and Kentucky, US, are the same
at 10 kg·CO2eq, their normalized savings differ 20%. Thus,
users should consider their decisions’ total carbon reduction,
rather than normalized savings, to judiciously select their
carbon-performance-cost trade-off configurations across op-
erating regions.
Key Takeaways: Carbon consumption and savings varies sig-
nificantly across regions, while performance overhead (waiting
time) is static aside from these variations.

6.4.4 Reserved-First Scheduling. Reserved instances in-
troduce a trade-off between cost and carbon savings that
varies across workload traces and policies. Figure 17 shows
the normalized cost and carbon per workload traces com-
pared to the highest value across policies in South Australia.
Since traces’ compute demand differs, we allocate a differ-
ent number of reserved instances ' per trace, where ' is
selected as the trace’s mean demand, which results in high
cost-savings as mentioned in [8].

As expected, the AllWait-Threshold policy yields the
highest carbon consumption and cost savings up to
46%, while the Ecovisor policy yields the highest cost,

2 6 12 18 24
Jmax scheduled on Spot (hour)

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
os

t

Eviction Rate (%)
0.0 5.0 10.0 15.0

2 6 12 18 24
Jmax scheduled on Spot (hour)

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
os

t

(a) Normalized Cost

2 6 12 18 24
Jmax scheduled on Spot (hour)

0.4

0.6

0.8

1.0

N
or

m
al

ie
d

C
ar

bo
n

(b) Normalized Carbon

Figure 18. Spot-First carbon and cost w.r.t. NoWait (on-
demand) execution for Azure-VM trace in South Australia.

adding 117 and 12% more cost compared to the AllWait-
Threshold and the Carbon-Time policies. In contrast, the
RES-First-Carbon-Time can bridge the gap by adding up to
9% more cost than the AllWait-Threshold, while using up
to 11% more carbon than the Ecovisor policy. The results also
depict variations among traces where the Azure-VM trace
shows the highest cost savings and lowest carbon reductions
while the Mustang-HPC trace shows the lowest cost savings
and highest carbon reduction. This is related to the demand
variability where the mean demand — the used number of re-
served instances — matches the demand where most jobs are
executed in the reserved instances. The demand coefficient
of variant (standard deviation/mean) for the Mustang-HPC
and Azure-VM traces are 0.8 and 0.3, respectively.
Key Takeaways: The variations in demand limit the cost sav-
ings but increase the scheduling flexibility, which in turn allows
for higher carbon savings.

6.4.5 Hybrid Cloud Clusters. Spot instances relax the
carbon-cost tension by allowing cost savings while following
the carbon-aware schedule. However, spot instances may be
evicted at any time, and the chance of being evicted increases
with execution time. Figure 18 details the potential gains and
overheads of the Spot-First policy across different settings
when replaying theAzure-VM trace in South Australia.The x-
axis depicts the maximum allowed time to be executed on the
spot instance, i.e., �<0G . We test with various eviction rates
that typically appear in a real datacenter and assume that
evicted instances progress is lost. The case of zero eviction
presents an upper bound on cost savings and retains the
same carbon savings as the carbon aware policy, which is
computed using the (Carbon-Time) policy.

As expected, extending �<0G without evictions is always
beneficial in cost and maintains all the carbon savings. How-
ever, with the introduction of eviction, extending �<0G yields
no or diminishing cost savings while strictly increasing car-
bon consumption. For example, when the eviction rate is
15%, extending �<0G beyond 6 hrs yields no cost savings
but increases the carbon by up to 12%. The reason for such

Going Green for Less Green: Optimizing the Cost of Reducing Cloud Carbon Emissions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0 40 80 120 160
Reserved Instance(#)

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
os

t

Jmax scheduled on Spot
0 (RES-First) 2 6 12

0 40 80 120 160
Reserved Instance(#)

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
os

t

(a) Normalized Cost

0 40 80 120 160
Reserved Instance(#)

0.4

0.6

0.8

1.0

N
or

m
al

ie
d

C
ar

bo
n

(b) Normalized Carbon

Figure 19. Normalized carbon and cost across �<0G values for
Azure-VM trace in South Australia, with a 10% eviction rate.

increases is that longer jobs are more likely to be evicted,
where the amount of lost progress, which incurs cost over-
head, outweighs the cost and gains from trying to follow the
carbon-aware schedule.

Mixing cloud instances yields a different trade-off as
it allows high carbon savings from following the carbon-
aware schedule by using spot instances and gaining cost
savings from the discounted rate of spot and reserved in-
stances, realized by the Spot-RES-Carbon-Time policy. We
note that the Spot-RES-Carbon-Time policy boils down
to Spot-First-Carbon-Time when reserved is 0 and RES-
First-Carbon-Time when spot instances are not utilized.
Figure 19 illustrates the effect of extending the reserved ca-
pacity across different �<0G for the Azure-VM trace in South
Australia, with a 10% eviction rate. As shown, extending
the reserved capacity shows similar trends across all cases.
However, the lowest cost point achieves higher carbon sav-
ings since the demand is partially split between regular and
spot instances. For example, when considering 12hr jobs
(�<0G = 12) for spot instances, the lowest cost is achieved
by having 120 reserved instances while achieving 7% carbon
savings. Similarly, when (�<0G = 6), the lowest cost point
(140 instances) offers 5.5% carbon savings.
Key Takeaways: Using of spot instances for long jobs has a
negative effect on cost and carbon. Hybrid clusters that use on-
demand, spot, and reserved instances can partially overcome
the carbon-cost tension.

7 Discussion
We have shown that a trade-off exists between carbon emis-
sions, performance, and cost in hybrid batch schedulers that
include both reserved and on-demand resources. We list our
findings to help users select their appropriate trade-off point.

1. Consider both carbon and performance. Scheduling to
minimize only carbon can introduce a high performance
penalty for comparatively little carbon savings. Thus, con-
sidering both carbon savings and performance, e.g., in

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
0

50

100

150

C
os

t (
$/

M
W

h)

Carbon-Cost Correlation

Carbon-Cost Conflict

300

400

500

600

C
ar

bo
n

(g
.C

O
2/

M
W

h)

Cost Carbon Intensity

Figure 20. Carbon intensity and energy cost for June 7-8
2022 in US, Texas.

Carbon-Time policy, is important when making schedul-
ing decisions.

2. Waiting for 12hrs balances carbon and performance.
Configuring the waiting time at the knee of the carbon-
performance frontier by setting the waiting time to 12hrs
for long jobs, see Figure 14, strikes a balance between
carbon and performance.

3. Delaying medium-length jobs is most beneficial.
Medium (3-12hrs) jobs have the most potential to reduce
carbon emissions as they can be flexibly moved to low-
carbon slots. In contrast, delaying several-day jobs has
less carbon reduction potential as they are subjected to
diurnal carbon intensity variations, as demonstrated in
Figure 9.

4. Reserve between the base and the mean demand.
Users can reduce their cost without affecting the sched-
uling flexibility by reserving enough capacity to satisfy
their base demand (See regime 1 from Figure 4). Further
increases in reserved instances till the mean demand al-
lows users to configure the trade-off point as shown in
Figure 11 and Figure 17.

5. Use spot instances for short jobs. Spot instances can
alleviate the carbon-cost tension when used with short
jobs to avoid eviction overheads.
Selecting an appropriate trade-off point depends on user

requirements and workload demand patterns. However, us-
ing a mixture of reserved, somewhere between the baseload
and average demand, and spot instances increases cost sav-
ings. In addition, using the Carbon-Time policy, focusing on
medium-length jobs, and configuring the scheduler to allow
12hrs of waiting time can increase the carbon reductions.

This paper focuses on carbon-cost trade-offs introduced
by different cloud pricing models and their utilization from
a cloud customer perspective. However, this trade-off also
presents itself in private clouds due to dynamic energy pric-
ing. Thus, as the compute cost varies throughout the day, a
carbon-aware schedule might not comply with a cost-aware
one. For example, when the carbon intensity and cost valleys
are aligned, the provider can find a schedule that optimizes
both carbon and cost. Otherwise, the user is left with a trade-
off between carbon and cost. Figure 20 shows the ERCOT
electricity grid (US, Texas) carbon intensity [26] and pricing

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Hanafy et al.

per MWh [2] for two consecutive days. The figure demon-
strates both cases where the first day of a carbon-aware
schedule is also cost-effective. In contrast, the second day de-
picts a mismatch between carbon and cost, where the users
are forced to prioritize one over the other. Finally, we note
that carbon intensity and cost data from ERCOT showed a
correlation coefficient of 0.16; thus, operators are left with a
similar carbon-cost trade-off.

Finally, while our work considers an explicit carbon-
performance-cost trade-off, an alternative approach is to
assign an explicit cost to carbon and thus reduce the problem
to a simpler cost-performance trade-off. For example, a cost
may be assigned to carbon emissions by applying a carbon
tax or mandating the purchase of carbon offsets. Assigning
such a direct cost to carbon would then enable policymakers
to adjust the incentive to reduce carbon emissions by adjust-
ing the cost. Thus, a high carbon tax would translate to high
carbon periods also being high cost periods. A few countries
have such a carbon tax, although most countries, including
the United States, do not [5], likely because a carbon tax
would raise energy costs [28]. Mandating the purchase of
carbon offsets can serve a similar role as a carbon tax in
assigning a cost to carbon. Some countries even permit the
use of carbon offsets to satisfy carbon taxes [4]. Importantly,
even if governments impose a carbon tax or mandate the
purchase of carbon offsets, to simplify the trade-off, cloud
platforms would need to expose this carbon cost to cloud
users by incorporating it into their resource cost. Currently,
even in countries with a carbon tax or mandatory carbon
offset scheme, cloud platforms do not vary resource prices
based on carbon emissions.

8 Related Work
Carbon-aware Scheduling. Prior work has employed tem-
poral shifting to schedule jobs at low carbon slots [17, 35,
39, 40, 44], spatial shifting by considering the carbon inten-
sity across multiple possible cloud regions [17, 36, 39], and
demand regulation by adjusting the job demand according
to the carbon intensity by scaling jobs or curtailing their
demand without pausing them [20, 21, 35, 40]. However,
prior work generally focuses on minimizing the carbon emis-
sions of a single job, while GAIA focuses on quantifying the
carbon-cost-performance trade-off.

Perhaps the most relevant work is presented in [30, 45, 48]
where the authors of [48] discuss the role of capacity caps in
carbon-aware scheduling along with key opportunities and
challenges. The authors of [30] explore such a mechanism
in carbon-aware management of private clouds containing
interactive and batch workloads by applying a global vir-
tual capacity limit to minimize carbon consumption while
adhering to SLO constraints. Another relevant approach is
presented in [45], where the authors enforce a datacenter-
level power cap at high carbon periods by modulating the

demand through temporal shifting and demand throttling of
both interactive and batch jobs using the power-performance
trade-offs across heterogeneous workloads while fairly at-
tributing such resource throttling across multiple workloads.
Similarly, GAIA employs temporal shifting but considers only
batch workloads. In addition, GAIA focuses on the cloud cus-
tomer’s perspective while these works are from a cloud
provider’s perspective and thus do not consider the cost
trade-off for cloud users introduced by on-demand, spot,
and reserved instances. Nonetheless, using resource caps
across different purchase options instead of carbon-aware
scheduling policies, as in GAIA, can yield similar carbon-
performance-cost trade-offs. Finally, we note that, although
not tackled in these works, providers may face a carbon-cost
trade-off due to variations in energy prices.
Overheads of Carbon Reduction. The trade-offs intro-
duced by carbon-aware scheduling have been mentioned
in earlier work [6, 20, 21, 40] without providing methods to
address them.The authors of [40] highlighted that increasing
completion time is a byproduct of carbon-aware scheduling.
Additionally, in [20, 21], the authors demonstrated that ex-
ploiting computing flexibility for carbon reduction increases
energy consumption and cost. Finally, the authors of [6]
noted the expected demand changes in carbon-aware sched-
uling. In contrast, we quantify this conflict’s breadth and
propose practical mechanisms to overcome these overheads.

9 Conclusion
In this paper, we analyzed the costs of carbon reduction
and showed the fundamental tension between carbon emis-
sions, performance, and cost. We showed the breadth of these
trade-offs in multiple settings and key reasons behind such
tension. To limit this tension, we presented GAIA and sched-
uling policies that navigate the trade-offs between carbon,
performance, and cost. We have shown different ways to
explore the three-way trade-off under different provisioning
mixtures and offer methods to increase carbon savings with
minimal cost and performance increases. In future work, we
will focus on other carbon-saving modalities, such as scaling,
and evaluate them in geographically federated clusters.

Acknowledgements
We thank the ASPLOS reviewers and our shepherd, John
Wilkes, for their valuable comments, which improved the
quality of this paper, and electricityMap for access to their
carbon-intensity data. This research is supported by NSF
grants 2211302, 2211888, 2213636, 2105494, USArmy contract
W911NF-17-2-0196, DOE award DE-EE0010143, VMware,
and Amazon Web Services.

Going Green for Less Green: Optimizing the Cost of Reducing Cloud Carbon Emissions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A Artifact Appendix
A.1 Abstract
This artifact contains the GAIA scheduler’s source code, the
proposed scheduler in the paper: Going Green for Less Green:
Optimizing the Cost of Reducing Cloud Carbon Emissions,
and execution instructions. GAIA is written in Python and re-
quires 1) pcluster: AWS ParallelCluster management com-
mand line interface and 2) PySlurm: Python-based SLURM
interface. GAIA contains two interfaces: an AWS Parallel-
Cluster interface and a simulation interface. The AWS Paral-
lelCluster is used to demonstrate our policies in a real testbed,
while the simulation is used for large-scale experiments. The
artifact also includes a configurable MPI program that il-
lustrates different job lengths and resource requirements in
the AWS ParallelCluster (Slurm) testbed. The artifact details
instructions for executing GAIA in both environments and
lists instructions for repeating Figures 8-12 in the simula-
tion environment. We provided instructions for running the
simulations and a Jupyter notebook to plot the results.

A.2 Artifact check-list (meta-information)
• Algorithm: Scheduling polices explained in Section 4.2
• Program: GAIA scheduler with AWS ParallelCluster

(Slurm) and simulation interfaces.
• Compilation: cmake v3.10+, libopenmpi-dev/openmpi-
bin v4.1, and PySlurm v23.2.2. 2

• Data set: Utilized job traces and carbon-traces are pro-
vided.

• Run-time environment: Code do not require specific
environment but AWS tests used Ubuntu 20.04, AWS
ParallelCluster v3.6.1, and Slurm v23.02.2.

• Metrics: Carbon Emissions, Dollar Cost, and Waiting
Time.

• Output: CSV files
• Experiments: We demonstrate the tension between

carbon, performance (waiting time) and cost. We also
show the effect of policies and knowledge assumptions

• How much time is needed to prepare workflow (ap-
proximately)?: Required simulations take 10 minute
per experiment. Real-experiments uses 2-3 days per
experiment.

• How much time is needed to complete experiments
(approximately)?: Simulation: 1 hours, Real: 50 Days
(Can be executed in parallel)

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT
• Archived (provide DOI)? 10.5281/zenodo.10888009

A.3 Description
GAIA implements two software interfaces for simulation
and for AWS ParallelCluster testbed. We list instructions for
both separately.

2Only required for AWS tests and instructions provided.

A.3.1 How to access. The code can be pulled from the pub-
lic Git repository https://github.com/umassos/GAIA, where
the branch ‘artifact’ is prepared for artifact evaluation. The
dependencies are PySlurm and AWS ParallelCluster CLI. De-
tailed installation steps are available in the README.md.

A.3.2 Hardware dependencies. The code does not have
any hardware requirements. The AWS ParallelCluster tests
were executed on instance type c7gn.medium.

A.3.3 Software dependencies. The simulations and plot-
ting were implemented using pandas v1.4.3, matplotlib
v3.5.3, and seaborn v0.12.0.

TheAWS ParallelCluster tests were executed using Ubuntu
20.04 and Slurm. The sample MPI job requires cmake,
libopenmpi-dev, and openmpi-bin for compilation. The
scheduler required PySlurm v23.2.2 to communicate with
the Slurm v23.02.2 scheduler.

A.3.4 Data sets. All the required data is provided in the
repository.

A.4 Installation
To download the code:

git clone -b artifiact \

github.com:umassos/GAIA

A.4.1 Simulation Environment. The simulation relies
on pandas and numpy to install requirements use:

pip3 install -r requirements.txt

A.4.2 AWS ParallelCluster Environment. In addition
to the simulation dependencies, running GAIA in AWS Paral-
lelCluster (Slurm) requires ParallelCluster CLI, PySlurm, and
an executable job.The README.md contains 1) Installing AWS
ParallelCluster CLI tool, 2) sample configuration files used
to create the cluster, 3) The code and complication details for
an N-body simulation MPI job to be used in our experiments,
and 4) PySlurm installation details.

A.5 Experiment workflow
The experiments demonstrate the conflict between perfor-
mance, carbon, and cost. To execute the experiments, the
GAIA scheduler loads a carbon trace, workload trace, and
cluster assumptions (reserved instance, spot, etc.). GAIA uses
the selected scheduling algorithms, job length knowledge
assumptions, and user configuration (waiting time) to select
each job start time. We list a few examples here. Details are
available in the README.md
Example 1: To run in a carbon and cost-agnostic manner.

python3 src/run.py --scheduling -policy \

cost --carbon -policy waiting -w 0x0

https://github.com/umassos/GAIA
https://pyslurm.github.io/23.2/
https://docs.aws.amazon.com/parallelcluster/latest/ug/install-v3-parallelcluster.html

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Hanafy et al.

Example 2: To run using the lowest carbon window (using
cluster-wide aggregate) and maximumwaiting 6hrs for short
jobs (<2hrs) and 24hrs for long jobs.

python3 src/run.py --scheduling -policy \

carbon --carbon -policy waiting -w 6x24

The default is to execute simulation. To use the AWS Paral-
lelCluster run the code inside the cluster master and provide
the --cluster-type slurm flag.

ssh user@masternodeIP

python3 src/run.py --cluster -type slurm

A.6 Evaluation and expected results
To reproduce Figures 8-12, we provide four bash scripts that
customize and run the experiments with the needed config-
uration. We provided a jupyter notebook to plot the Figures
in notebooks/evaluation_ploti�pynb.
- Figure 8: Normalized carbon emissions and waiting times
across policies.
- Figure 9: CDF of the normalized total carbon reductions.

./src/figure8 -9.sh

- Figure 10: Normalized Carbon, Cost, and Waiting Time
across policies when using reserved instances.

./src/figure10.sh

- Figure 11: Effect of reserved instances on the carbon sav-
ings and cost using a work-conserving and carbon-aware
scheduling policy.

./src/figure11.sh

- Figure 12: Effect of both spot and reserved instances on the
carbon savings and cost using multiple policies and configu-
rations.

./src/figure12.sh

The result for each experiments are an aggregate file that
contains the total consumption, a details file that contains
the consumption of each job, and a run time file that contains
the allocation and carbon consumption during the execution
time.

A.7 Experiment customization
Users can customize their configurations and use examples
from the evaluation section.

1. Carbon Trace: Carbon Intensity (per hour) for expected
experiment duration.

2. Carbon Index: Start index within the trace to test sea-
sons and times of day.

3. Workload Trace: Workload trace (jobs with length and
CPU requirements).

4. Scheduling Policies (README.md provides the mapping
between policies and configurations).

5. Cluster Configuration: Types of used resources, e.g.,
Reserved, Spot, and On-Demand.

A.8 Notes
The code to execute the jobs in AWS ParallelCluster is avail-
able, and we are happy to work with reviewers to show how
it runs. However, we are asking the reviewers to reproduce
results in simulation, as reproducing the results in the AWS
ParallelCluster testbed is time-consuming and costly.

Also, we omitted the instructions to run Figures 13-19
as they are a super-set of the findings in Figures 8-12 and
require many hours in simulation as traces are year-long
and have 100k jobs. However, we provided the used traces
and will provide the details if the reviewers need them.

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-
review-badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

References
[1] AWS ParallelCluster. https://docs.aws.amazon.com/parallelcluster/,

2023.
[2] ERCOT electricity gridmarket prices. https://www.ercot.com/mktinfo/

prices, September 2023.
[3] PySlurm: Python client library for the SlurmWorkload Manager. https:

//github.com/PySlurm/pyslurm, 2023.
[4] Carbon Offset Guide. https://www.offsetguide.org/understanding-

carbon-offsets/carbon-offset-programs/mandatory-voluntary-offset-
markets/, Acessed March 2024.

[5] Which countries have a carbon tax? https://ourworldindata.org/
carbon-pricing, Accessed March 2024.

[6] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit
Gupta, Manoj Chakkaravarthy, David Brooks, and Carole-Jean Wu.
Carbon explorer: A holistic framework for designing carbon aware
datacenters. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
118–132, 2023.

[7] Ahmed Ali-Eldin, Jonathan Westin, Bin Wang, Prateek Sharma, and
Prashant Shenoy. SpotWeb: Running Latency-sensitive Distributed
Web Services on Transient Cloud Servers. In ACM Symposium on
High-Performance Parallel and Distributed Computing (HPDC), pages
1–12, Phoenix, Arizona, June 2019.

[8] Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy.
Waiting Game: Optimally Provisioning Fixed Resources for Cloud-
enabled Schedulers. In ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pages
1–14, November 2020.

[9] Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy.
Good Things Come to Those Who Wait: Optimizing Job Waiting in
the Cloud. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC ’21, page 229–242, 2021.

[10] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gib-
son, Elisabeth Baseman, and Nathan DeBardeleben. On the diversity
of cluster workloads and its impact on research results. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages 533–546, Boston,
MA, July 2018.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://docs.aws.amazon.com/parallelcluster/
https://www.ercot.com/mktinfo/prices
https://www.ercot.com/mktinfo/prices
https://github.com/PySlurm/pyslurm
https://github.com/PySlurm/pyslurm
https://www.offsetguide.org/understanding-carbon-offsets/carbon-offset-programs/mandatory-voluntary-offset-markets/
https://www.offsetguide.org/understanding-carbon-offsets/carbon-offset-programs/mandatory-voluntary-offset-markets/
https://www.offsetguide.org/understanding-carbon-offsets/carbon-offset-programs/mandatory-voluntary-offset-markets/
https://ourworldindata.org/carbon-pricing
https://ourworldindata.org/carbon-pricing

Going Green for Less Green: Optimizing the Cost of Reducing Cloud Carbon Emissions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[11] Microsoft Azure. Azure Public Dataset. https://github.com/Azure/
AzurePublicDataset, Accessed October 2020.

[12] Noman Bashir, David Irwin, Prashant Shenoy, and Abel Souza. Sus-
tainable Computing – Without the Hot Air. In Proceedings of the First
Workshop on Sustainable Computer Systems Design and Implementation
(HotCarbon), 2022.

[13] Eric A. Brewer. Kubernetes and the path to cloud native. In Proceedings
of the Sixth ACM Symposium on Cloud Computing, SoCC ’15, page 167,
2015.

[14] Amanda Calatrava, Eloy Romero, Germán Moltó, Miguel Caballer, and
Jose Miguel Alonso. Self-managed cost-efficient virtual elastic clusters
on hybrid Cloud infrastructures. Future Generation Computer Systems,
61:13–25, 2016.

[15] Wesley J Cole, Danny Greer, Paul Denholm, A Will Frazier, Scott
Machen, Trieu Mai, Nina Vincent, and Samuel F Baldwin. Quantifying
the challenge of reaching a 100% renewable energy power system for
the United States. Joule, 5(7):1732–1748, 2021.

[16] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. Resource central: Understanding
and predicting workloads for improved resource management in large
cloud platforms. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, page 153–167, 2017.

[17] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark,
Roy Schwartz, Emma Strubell, Alexandra Sasha Luccioni, Noah A.
Smith, Nicole DeCario, and Will Buchanan. Measuring the carbon
intensity of ai in cloud instances. In 2022 ACM Conference on Fairness,
Accountability, and Transparency, FAccT ’22, pages 1877–1894, 2022.

[18] Ana Gainaru, Guillaume Pallez Aupy, Hongyang Sun, and Padma
Raghavan. Speculative scheduling for stochastic hpc applications. In
Proceedings of the 48th International Conference on Parallel Processing,
ICPP 2019, pages 32:1–32:10, 2019.

[19] Wolfgang Gentzsch. Sun grid engine: Towards creating a compute
power grid. In Proceedings First IEEE/ACM International Symposium
on Cluster Computing and the Grid, pages 35–36, 2001.

[20] Walid A. Hanafy, Roozbeh Bostandoost, Noman Bashir, David Irwin,
Mohammad Hajiesmaili, and Prashant Shenoy. The War of the Ef-
ficiencies: Understanding the Tension between Carbon and Energy
Optimization. In Proceedings of the 2nd Workshop on Sustainable Com-
puter Systems, HotCarbon ’23, 2023.

[21] Walid A. Hanafy, Qianlin Liang, Noman Bashir, David Irwin, and
Prashant Shenoy. CarbonScaler: Leveraging Cloud Workload Elas-
ticity for Optimizing Carbon-Efficiency. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 7(3), December 2023.

[22] Urs Hölzle. Meeting Our Match: Buying 100 Percent Renewable En-
ergy. https://blog.google/outreach-initiatives/environment/meeting-
our-match-buying-100-percent-renewable-energy/, 2018.

[23] IEA. Global trends in internet traffic, data centre workloads and
data centre energy use, 2010-2019. https://www.iea.org/data-
and-statistics/charts/global-trends-in-internet-traffic-data-centre-
workloads-and-data-centre-energy-use-2010-2019, 2022.

[24] Michael Kuchnik, Jun Woo Park, Charles D. Cranor, Elisabeth Moore,
Nathan Debardeleben, and George Amvrosiadis. This is why ml-driven
cluster scheduling remains widely impractical. Technical report, CMU-
PDL-19-103, 2019.

[25] Diptyaroop Maji, Prashant Shenoy, and Ramesh K. Sitaraman. Carbon-
Cast: Multi-Day Forecasting of Grid Carbon Intensity. In Proceedings
of the 9th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation, BuildSys ’22, page 198–207, 2022.

[26] Electricity Maps. Electricity Maps. https://www.electricitymap.org/
map, Accessed September 2022.

[27] Paul Marshall, Kate Keahey, and Tim Freeman. Elastic Site: Using
Clouds to Elastically Extend Site Resources. In 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pages
43–52, 2010.

[28] Congressional Budget Office. Effects of a Carbon Tax on the Economy
and the Environment. https://www.cbo.gov/publication/44223. May
2013.

[29] Lucas Perotin, Chaojie Zhang, Rajini Wijayawardana, Anne Benoit,
Yves Robert, and Andrew Chien. Risk-Aware Scheduling Algorithms
for Variable Capacity Resources. In Proceedings of the SC ’23 Work-
shops of The International Conference on High Performance Computing,
Network, Storage, and Analysis, SC-W ’23, page 1306–1315, 2023.

[30] Ana Radovanovic, Ross Koningstein, Ian Schneider, Bokan Chen,
Alexandre Duarte, Binz Roy, Diyue Xiao, Maya Haridasan, Patrick
Hung, Nick Care, Saurav Talukdar, Eric Mullen, Kendal Smith,
Mariellen Cottman, and Walfredo Cirne. Carbon-Aware Computing
for Datacenters. IEEE Transactions on Power Systems, 38(2):1270–1280,
2022.

[31] Ana Radovanović, Ross Koningstein, Ian Schneider, Bokan Chen,
Alexandre Duarte, Binz Roy, Diyue Xiao, Maya Haridasan, Patrick
Hung, Nick Care, Saurav Talukdar, Eric Mullen, Kendal Smith,
MariEllen Cottman, and Walfredo Cirne. Carbon-aware Computing
for Datacenters. IEEE Transactions on Power Systems, 2023.

[32] Manuel Rodriguez-Pascual, J.A. Morinigo, and Rafael Mayo-Garcia.
Checkpoint/Restart in Slurm: current status and new developments.
https://slurm.schedmd.com/SLUG16/ciemat-cr.pdf, March 2024.

[33] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant
Shenoy. Flint: Batch-Interactive Data-Intensive Processing for Tran-
sient Servers. In ACM European Conference on Computer Systems
(EuroSys), EuroSys ’16, London, United Kingdom, 2016.

[34] Supreeth Shastri, Amr Rizk, and David Irwin. Transient Guarantees:
Maximizing the Value of Idle Cloud Capacity. In ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pages 1–11, Salt Lake City, Utah, November 2016.

[35] Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang,
David Irwin, and Prashant Shenoy. Ecovisor: A Virtual Energy System
for Carbon-Efficient Applications. In ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 252–265, March 2023.

[36] Abel Souza, Shruti Jasoria, Basundhara Chakrabarty, Alexander Bridg-
water, Axel Lundberg, Filip Skogh, Ahmed Ali-Eldin, David Irwin, and
Prashant Shenoy. CASPER: Carbon-Aware Scheduling and Provision-
ing for Distributed Web Services. In Proceedings of the 14th Interna-
tional Green and Sustainable Computing Conference (IGSC), Toronto,
ON, Canada, 10 2023.

[37] Garrick Staples. TORQUE resource manager. In Proceedings of the
2006 ACM/IEEE conference on Supercomputing, page 8, 2006.

[38] Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, and
Prashant Shenoy. SpotOn: A Batch Computing Service for the Spot
Market. In Proceedings of the Sixth ACM Symposium on Cloud Comput-
ing (SoCC), pages 329–341, Kohala Coast, Hawai’i, August 2015.

[39] Thanathorn Sukprasert, Abel Souza, Noman Bashir, David Irwin, and
Prashant Shenoy. On the Limitations of Carbon-Aware Temporal
and Spatial Workload Shifting in the Cloud. In Nineteenth European
Conference on Computer Systems (EuroSys), Athens, Greece, 2024.

[40] JohnThiede, Noman Bashir, David Irwin, and Prashant Shenoy. Carbon
Containers: A System-level Facility for Managing Application-level
Carbon Emissions. In Proceedings of 14th Symposium on Cloud Com-
puting (SoCC), 11 2023.

[41] Noelle Walsh. Achieving 100 percent Renewable Energy with 24/7
Monitoring in Microsoft Sweden. https://azure.microsoft.com/en-
us/blog/achieving-100-percent-renewable-energy-with-247-
monitoring-in-microsoft-sweden/, 2020.

[42] WattTime. WattTime. https://www.watttime.org/.
[43] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,

Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. MLaaS in the
wild: Workload analysis and scheduling in large-scale heterogeneous
GPU clusters. In 19th {USENIX} Symposium on Networked Systems

https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://blog.google/outreach-initiatives/environment/meeting-our-match-buying-100-percent-renewable-energy/
https://blog.google/outreach-initiatives/environment/meeting-our-match-buying-100-percent-renewable-energy/
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-workloads-and-data-centre-energy-use-2010-2019
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-workloads-and-data-centre-energy-use-2010-2019
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-workloads-and-data-centre-energy-use-2010-2019
https://www.electricitymap.org/map
https://www.electricitymap.org/map
https://www.cbo.gov/publication/44223
https://slurm.schedmd.com/SLUG16/ciemat-cr.pdf
https://azure.microsoft.com/en-us/blog/achieving-100-percent-renewable-energy-with-247-monitoring-in-microsoft-sweden/
https://azure.microsoft.com/en-us/blog/achieving-100-percent-renewable-energy-with-247-monitoring-in-microsoft-sweden/
https://azure.microsoft.com/en-us/blog/achieving-100-percent-renewable-energy-with-247-monitoring-in-microsoft-sweden/
https://www.watttime.org/

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Hanafy et al.

Design and Implementation ({NSDI} 22), pages 945–960, 2022.
[44] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska,

and Lauritz Thamsen. Let’s Wait Awhile: How Temporal Workload
Shifting Can Reduce Carbon Emissions in the Cloud. In Proceedings
of the 22nd International Middleware Conference (Middleware), page
260–272, December 2021.

[45] Jiali Xing, Bilge Acun, Aditya Sundarrajan, David Brooks, Manoj
Chakkaravarthy, Nikky Avila, Carole-Jean Wu, and Benjamin C. Lee.
Carbon Responder: Coordinating Demand Response for the Datacenter
Fleet. E-Print arXiv 2311.08589, 2023.

[46] Fangkai Yang, Lu Wang, Zhenyu Xu, Jue Zhang, Liqun Li, Bo Qiao,
Camille Couturier, Chetan Bansal, Soumya Ram, Si Qin, Zhen Ma,
Íñigo Goiri, Eli Cortez, Terry Yang, Victor Rúhle, Saravan Rajmohan,

Qingwei Lin, and Dongmei Zhang. Snape: Reliable and Low-Cost
Computing with Mixture of Spot and On-Demand VMs. In Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ASPLOS
2023, page 631–643, 2023.

[47] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple Linux
Utility for Resource Management. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 44–60. Springer, 2003.

[48] Chaojie Zhang and Andrew A. Chien. Scheduling Challenges for
Variable Capacity Resources. In Dalibor Klusáček, Walfredo Cirne,
and Gonzalo P. Rodrigo, editors, Job Scheduling Strategies for Parallel
Processing, pages 190–209, 2021.

	Abstract
	1 Introduction
	2 Background
	2.1 Grid Carbon Intensity
	2.2 Cluster-wide temporal shifting
	2.3 Cloud-based Batch Schedulers

	3 The Carbon-Performance-Cost Tension
	4 GAIA Design and Policies
	4.1 System Architecture
	4.2 GAIA Scheduling Policies

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Carbon- and Performance-aware Scheduling
	6.3 Cost- and Carbon-aware Scheduling
	6.4 Large Scale Experiments

	7 Discussion
	8 Related Work
	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes
	A.9 Methodology

	References

